203 research outputs found

    Impact of calcium on salivary α-amylase activity, starch paste apparent viscosity and thickness perception

    Get PDF
    Thickness perception of starch-thickened products during eating has been linked to starch viscosity and salivary amylase activity. Calcium is an essential cofactor for α-amylase and there is anecdotal evidence that adding extra calcium affects amylase activity in processes like mashing of beer. The aims of this paper were to (1) investigate the role of salivary calcium on α-amylase activity and (2) to measure the effect of calcium concentration on apparent viscosity and thickness perception when interacting with salivary α-amylase in starch-based samples. α-Amylase activity in saliva samples from 28 people was assessed using a typical starch pasting cycle (up to 95 °C). The activity of the enzyme (as measured by the change in starch apparent viscosity) was maintained by the presence of calcium, probably by protecting the enzyme from heat denaturation. Enhancement of α-amylase activity by calcium at 37 °C was also observed although to a smaller extent. Sensory analysis showed a general trend of decreased thickness perception in the presence of calcium, but the result was only significant for one pair of samples, suggesting a limited impact of calcium enhanced enzyme activity on perceived thickness

    Gene expression analysis of flax seed development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Flax, <it>Linum usitatissimum </it>L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed.</p> <p>Results</p> <p>We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions <ext-link ext-link-id="LIBEST_026995" ext-link-type="gen">LIBEST_026995</ext-link> to <ext-link ext-link-id="LIBEST_027011" ext-link-type="gen">LIBEST_027011</ext-link>) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for <it>in silico </it>expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development.</p> <p>Conclusions</p> <p>We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise even low-expressed genes such as those encoding transcription factors. This has allowed us to delineate the spatio-temporal aspects of gene expression underlying the biosynthesis of a number of important seed constituents in flax. Flax belongs to a taxonomic group of diverse plants and the large sequence database will allow for evolutionary studies as well.</p

    A Multilevel Product Model for Simulation-Based Design of Mechanical Systems

    Get PDF
    This paper presents a multilevel product model that supports Simulation-Based Design (SBD) of mechanical systems, from pre liminary to detailed design stages The pnmary goal of the SBD is to achieve product designs featuring better performance and greater du rability and reliability through computer-based modeling, engineering analysis, and design trade-off. A Computer-Aided Design (CAD) model combined with engineering parameters and mathematical equations that simulate physical behavior of the mechanical system constitute its product model for SBD. For preliminary design, improvement of system performance, including dynamics and human factors, is usually the primary focus A CAD model with reasonably accurate physical parameters, such as mass properties of major components or assemblies, is defined as the base definition of the product model for SBD. A number of simulation models are derived from the base definition to sup port simulation of the mechanical system performance A parametric study can be conducted to search for design alternatives using dimen sion parameters created in the parameterized CAD model. The CAD model and base definition are then refined from the preliminary design stage to support intermediate designs. Intermediate designs will primarily focus on product subsystem performance. A product model is evolved by refining geometric representation of mechanical components in CAD, and expanding product assembly into parts and sub assemblies for further engineering analysis Component designs for performance, such as fatigue, mechanical reliability, and structural per formance, as well as maintainability are the primary focus in the detailed design stage. A detailed product model evolved from that of the previous design is needed In the detailed design stage, a systematic design trade-off method supports design improvement. A High Mobil ity Multi-Purpose Wheeled Vehicle (HMMWV) is employed to illustrate and demonstrate the proposed product model.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Micro-manufacturing : research, technology outcomes and development issues

    Get PDF
    Besides continuing effort in developing MEMS-based manufacturing techniques, latest effort in Micro-manufacturing is also in Non-MEMS-based manufacturing. Research and technological development (RTD) in this field is encouraged by the increased demand on micro-components as well as promised development in the scaling down of the traditional macro-manufacturing processes for micro-length-scale manufacturing. This paper highlights some EU funded research activities in micro/nano-manufacturing, and gives examples of the latest development in micro-manufacturing methods/techniques, process chains, hybrid-processes, manufacturing equipment and supporting technologies/device, etc., which is followed by a summary of the achievements of the EU MASMICRO project. Finally, concluding remarks are given, which raise several issues concerning further development in micro-manufacturing

    The sugar and energy in non-carbonated sugar-sweetened beverages: a cross-sectional study.

    Get PDF
    BACKGROUND: The consumption of non-carbonated sugar-sweetened beverages (NCSSBs) has many adverse health effects. However, the sugar and energy content in NCSSBs sold in China remain unknown. We aimed to investigate the sugar and energy content of NCSSBs in China and how these contents were labelled. METHODS: A cross-sectional survey was conducted in 15 supermarkets in Haidian District, Beijing from July to October 2017. The product packaging and nutrient information panels of NCSSBs were recorded to obtain type of products (local/imported), serving size, nutrient contents of carbohydrate, sugar and energy. For those NCSSBs without sugar content information, we used carbohydrate content as a replacement. RESULTS: A total of 463 NCSSBs met the inclusion criteria and were included in our analysis. The median of sugar content and energy content was 9.6 [interquartile range (IQR): 7.1-11.3] g/100 ml and 176 (IQR: 121-201) kJ/100 ml. The median of sugar contents in juice drinks, tea-based beverages, sports drinks and energy drinks were 10.4, 8.5, 5.0 and 7.4 g/100 ml. Imported products had higher sugar and energy content than local products. There were 95.2% products of NCSSBs receiving a 'red'(high) label for sugars per portion according to the UK criteria, and 81.6% products exceeding the daily free sugar intake recommendation from the World Health Organization (25 g). There were 82 (17.7%) products with sugar content on the nutrition labels and 60.2% of them were imported products. CONCLUSIONS: NCSSBs had high sugar and energy content, and few of them provided sugar content information on their nutrition labels especially in local products. Measures including developing better regulation of labelling, reducing sugar content and restricting the serving size are needed for reducing sugar intakes in China

    The Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate

    Get PDF
    The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdH− mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdH− mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide “added protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway
    • 

    corecore